Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 104: 104323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37995888

RESUMO

Pollinator health has been of critical concern over the last few decades. The prevalence of the honeybee Colony Collapse Disorder (CCD), changing climate, and the rise of vector-borne honeybee diseases by Varroa destructor, have played a major role in the rapid decline of global honeybee populations. Honeybees are environmentally and economically significant actors in biodiversity. The impact of agricultural practices, such as pesticide use, has exacerbated the negative effects on honeybees. We demonstrate the synergistic effect of cocktails of the neonicotinoids imidacloprid and acetamiprid on honeybee haemocytes. Two genes responsible for critical immune responses, spaetzle and myD88, are consistently dysregulated following exposure to either neonicotinoid alone or as a mixture with or without an immune challenge. The 2018 ban of neonicotinoids in Europe, followed by the 2020 reauthorisation of imidacloprid in France and the current consideration to reinstate acetamiprid underscores the need to evaluate their cumulative impact on honeybee health.


Assuntos
Inseticidas , Fator 88 de Diferenciação Mieloide , Abelhas , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade
2.
Insects ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36835742

RESUMO

Invertebrates have a diverse immune system that responds differently to stressors such as pesticides and pathogens, which leads to different degrees of susceptibility. Honeybees are facing a phenomenon called colony collapse disorder which is attributed to several factors including pesticides and pathogens. We applied an in vitro approach to assess the response of immune-activated hemocytes from Apis mellifera, Drosophila melanogaster and Mamestra brassicae after exposure to imidacloprid and amitraz. Hemocytes were exposed to the pesticides in single and co-exposures using zymosan A for immune activation. We measured the effect of these exposures on cell viability, nitric oxide (NO) production from 15 to 120 min and on extracellular hydrogen peroxide (H2O2) production after 3 h to assess potential alterations in the oxidative response. Our results indicate that NO and H2O2 production is more altered in honeybee hemocytes compared to D. melanogaster and M. brassicae cell lines. There is also a differential production at different time points after pesticide exposure between these insect species as contrasting effects were evident with the oxidative responses in hemocytes. The results imply that imidacloprid and amitraz act differently on the immune response among insect orders and may render honeybee colonies more susceptible to infection and pests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA